Machine learning paradigms in high-resolution remote sensing image interpretation
نویسندگان
چکیده
é«å辨ç饿影åè§£è¯æ¯é¥æä¿¡æ¯å¤çé¢åçç ç©¶çç¹ä¹ä¸ï¼å¨é¥æå¤§æ°æ®ç¥è¯ææä¸æºè½ååæä¸èµ·çè³å ³éè¦çä½ç¨ï¼å ·æéè¦çæ°ç¨ååäºåºç¨ä»·å¼ãä¼ ç»çé«å辨ç饿影åè§£è¯é常éç¨äººå·¥ç®è§è§£è¯æ¹å¼ï¼è´¹æ¶è´¹åä¸ç²¾åº¦ä½ãæä»¥ï¼å¦ä½èªå¨ã髿å°å®ç°é«å辨ç饿影åè§£è¯æ¯äºå¾ è§£å³çé®é¢ãè¿å¹´æ¥ï¼éç人工æºè½ææ¯çé£éåå±ï¼éç¨æºå¨å¦ä¹ æ¹æ³å®ç°é«å辨ç饿影åè§£è¯å·²æä¸ºä¸»æµçç ç©¶æ¹åãæ¬æç»åé«å辨ç饿影åè§£è¯çå ¸åä»»å¡ï¼å¦ç®æ æ£æµãåºæ¯åç±»ãè¯ä¹åå²ãé«å è°±å¾ååç±»çï¼ç³»ç»ç»¼è¿°äº5ç§ä»£è¡¨æ§çæºå¨å¦ä¹ èå¼ãå ·ä½æ¥è¯´ï¼æ¬æåå«ä»ç»äºä¸åæºå¨å¦ä¹ èå¼çå®ä¹ãå¸¸ç¨æ¹æ³ä»¥å代表æ§åºç¨ï¼å æ¬å ¨çç£å¦ä¹ ï¼å¦æ¯æåéæºãK-æè¿é»ãå³çæ ãéæºæ£®æãæ¦ç徿¨¡åï¼ãåçç£å¦ä¹ ï¼å¦çº¯åçç£å¦ä¹ ãç´æ¨å¦ä¹ ã主å¨å¦ä¹ ï¼ãå¼±çç£å¦ä¹ ï¼å¦å¤ç¤ºä¾å¦ä¹ ï¼ãæ çç£å¦ä¹ ï¼å¦èç±»ã主æååæãç¨ç表达ï¼å深度å¦ä¹ ï¼å¦å æ èªç¼ç æºã深度信念ç½ç»ãå·ç§¯ç¥ç»ç½ç»ãçæå¯¹æç½ç»ï¼ãå ¶æ¬¡ï¼æ·±å ¥åæäºç§æºå¨å¦ä¹ èå¼çä¼ç¼ºç¹ï¼å¹¶æ»ç»äºå®ä»¬å¨é¥æå½±åè§£è¯ä¸çå ¸ååºç¨ãæåï¼å±æäºé«å辨ç饿影åè§£è¯çæºå¨å¦ä¹ å屿¹åï¼å¦å°æ ·æ¬å¦ä¹ ãæ çç£æ·±åº¦å¦ä¹ ã强åå¦ä¹ çã
منابع مشابه
Design and Implementation of a High Spatial Resolution Remote Sensing Image Intelligent Interpretation System
Very high spatial resolution remote sensing images have applications in many fields. However, research on the intelligent interpretation of such images is insufficient partly because of their the complexity and large size. In this study, a high spatial resolution remote sensing image intelligent interpretation system (HSR—RSIIIs) was designed with image segmentation, a geographical information ...
متن کاملEvaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)
Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...
متن کاملMultiple instance ensemble learning method for high-resolution remote sensing image classification
Multiple Instance Learning Via Embedded Instance Selection (MILES) has shown good performance in dealing with noisy training samples, but its bag prediction rule may introduce new uncertainty into the remote sensing image classification results. In order to overcome this limitation, two popular ensemble learning strategies, Bagging and AdaBoost are integrated with MILES. Two methods are propose...
متن کاملLearning Low Dimensional Convolutional Neural Networks for High-Resolution Remote Sensing Image Retrieval
Learning powerful feature representations for image retrieval has always been a challenging task in the field of remote sensing. Traditional methods focus on extracting low-level hand-crafted features which are not only time-consuming but also tend to achieve unsatisfactory performance due to the complexity of remote sensing images. In this paper, we investigate how to extract deep feature repr...
متن کاملInteractive Learning in Remote Sensing Image Databases
In this paper we present a concept of interactive learning in an intelligent remote sensing image database that allows users to query by image content. First, an application-free description of the image content is generated at data insertion. This description should globally capture the structures in the image data. Then, in an interactive step, users of different application fields can define...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of remote sensing
سال: 2021
ISSN: ['1007-4619', '2095-9494']
DOI: https://doi.org/10.11834/jrs.20210164